
How do Machine Learning Projects use Continuous Integration
Practices? An Empirical Study on GitHub Actions

João Helis Bernardo
Federal University of Rio Grande do Norte
Federal Institute of Rio Grande do Norte

Natal, Brazil
joao.helis@ifrn.edu.br

Daniel Alencar da Costa
University of Otago

Dunedin, New Zealand
danielcalencar@otago.ac.nz

Sérgio Queiroz de Medeiros
Federal University of Rio Grande do Norte

Natal, Brazil
sergio.medeiros@ufrn.br

Uirá Kulesza
Federal University of Rio Grande do Norte

Natal, Brazil
uira@dimap.ufrn.br

ABSTRACT

Continuous Integration (CI) is a well-established practice in tradi-

tional software development, but its nuances in the domain of Ma-

chine Learning (ML) projects remain relatively unexplored. Given

the distinctive nature of ML development, understanding how CI

practices are adopted in this context is crucial for tailoring effective

approaches. In this study, we conduct a comprehensive analysis

of 185 open-source projects on GitHub (93 ML and 92 non-ML

projects). Our investigation comprises both quantitative and qual-

itative dimensions, aiming to uncover differences in CI adoption

between ML and non-ML projects. Our findings indicate that ML

projects often require longer build duration, and medium-sized ML

projects exhibit lower test coverage compared to non-ML projects.

Moreover, small and medium-sized ML projects show a higher

prevalence of increasing build duration trends compared to their

non-ML counterparts. Additionally, our qualitative analysis illumi-

nates the discussions around CI in both ML and non-ML projects,

encompassing themes like CI Build Execution and Status, CI Test-

ing, and CI Infrastructure. These insights shed light on the unique

challenges faced by ML projects in adopting CI practices effectively.

CCS CONCEPTS

• Computing methodologies →Machine learning.

KEYWORDS

continuous integration, machine learning, github actions, mining

software repositories

ACM Reference Format:

João Helis Bernardo, Daniel Alencar da Costa, Sérgio Queiroz de Medeiros,

and Uirá Kulesza. 2024. How do Machine Learning Projects use Contin-

uous Integration Practices? An Empirical Study on GitHub Actions. In

21st International Conference on Mining Software Repositories (MSR ’24),

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MSR ’24, April 15–16, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0587-8/24/04
https://doi.org/10.1145/3643991.3644915

April 15–16, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3643991.3644915

1 INTRODUCTION

The recent trend in the software industry involves integrating

artificial intelligence (AI) capabilities based on advances in ma-

chine learning (ML) techniques [1]. ML has been applied to vari-

ous domains [2–4], gaining further prominence due to recent ad-

vancements, such as the ability to build Large Language Models

(LLMs) [5]. It is estimated that over 50% of organizations are either

exploring or in the planning stages of adopting ML technology

[6]. ML techniques rely on both mathematics and software engi-

neering [2]. While mathematics is used to generate the statistical

models that are the basis of ML algorithms, software engineering

is employed for the implementation and robust performance of the

software project.

The AI domain has aspects fundamentally different from prior

software application domains [1]. ML projects follow a distinct

development process compared to traditional software projects,

involving data engineering and model management [7], which en-

compass more intense data treatment and testing iterations. For

instance, managing and versioning the data needed for ML applica-

tions is much more difficult than other types of software projects.

Additionally, the customization and reuse of ML models demand

specialized skills not commonly found within standard software

teams [1]. Therefore, the research area of Software Engineering

for Machine Learning (SE4ML) has employed a significant effort to

understand and adapt software engineering practices to effectively

develop, deploy, and maintain ML projects. ML projects also require

multiple iterations to integrate new functionalities and improve

their quality, and thus may benefit from Agile Releasing Engineer-

ing practices [8], such as Continuous Integration (CI) [9].

CI is a widely adopted practice that advocates frequent and

automated integration of code changes into a shared repository,

usually on a daily basis [10, 11]. Its principles emphasize not only

frequent code integration but also automated testing, enabling rapid

feedback loops and facilitating collaboration among development

teams [12]. Prior research has investigated the impact of CI on the

context of open-source projects [13–17]. For instance, Vasilescu

et al. [13] revealed a positive association between the adoption of

Travis CI and the number of bugs detected by core developers.

665

2024 IEEE/ACM 21st International Conference on Mining Software Repositories (MSR)

MSR ’24, April 15–16, 2024, Lisbon, Portugal Bernardo et al.

Hilton et al. [16] observed that CI is pivotal in facilitating more

frequent software releases. Furthermore, recent works into CI have

expanded their focus beyond the mere adoption of CI services,

instead investigating the specific CI practices employed by software

projects [18–20]. CI practices refer to common practices that should

be followed by developers when adopting CI, such as frequent code

commits, short build duration, quick build fixes, and test coverage

monitoring. In the context of ML projects, Rzig et al. [9] conducted

an analysis revealing that approximately 37% of ML projects have

integrated a CI service in their workflow. They also found that the

most prevalent CI tasks in ML projects encompass software testing

and building. Furthermore, recent efforts aimed to create dedicated

CI services for the ML field [21], considering its intricacies (i.e.,

traditional testing may overfit ML models).

Nevertheless, there is a knowledge gap concerning the adop-

tion patterns of CI practices within ML projects. Questions such

as “Do ML projects effectively employ CI practices?” have yet to be

answered. Uncovering the nuances of CI adoption in ML projects

can guide the development of customized approaches for the effec-

tive adoption of CI practices within this unique domain. Therefore,

we propose an empirical study that analyzes data from 185 open-

source projects from GitHub, comprising 93 ML projects and 92

non-ML projects. We aim to investigate how CI is applied and dis-

cussed by software developers in the ML development domain. Our

investigation focuses on the following research questions (RQs):

• RQ1. To what extent do CI practices adoption differ

between ML and non-ML projects?ML projects tend to

require a longer build duration. In addition, medium-sized

ML projects tend to have a lower test coverage.

• RQ2. What are the evolution trends of build duration

and test coverage within ML and non-ML projects?

Small and medium-sized ML projects manifest higher in-

creasing build duration trends (75% and 61.4%) compared to

non-ML projects (35.7% and 44.7%). Furthermore, both ML

and non-ML projects manifest a maintaining test coverage

trend, even with 46% of the medium ML projects exhibiting

a median coverage rate below 75%.

• RQ3.What doMLandnon-MLdevelopers discuss about

CI in their projects? Both ML and non-ML projects share

common discussions on CI Build Execution and Status, CI

Infrastructure, CI Pipeline Configuration, and CI Testing and

Code Quality. However, ML projects exhibit a more extensive

range of CI-related themes (73 themes) compared to non-ML

projects (23 themes). Notably, a significant difference arises

in the prevalence of the "relatedness of failures" theme in ML

project discussions, indicating a potential higher incidence

of false positives in their CI systems.

Paper organization. In Section 2, we present our study setup,

followed by the presentation of results and discussions in Sections

3 and 4, respectively. Section 5 addresses the threats to validity,

while Section 6 discusses the related work. We conclude our paper

in Section 7.

2 RESEARCH METHODOLOGY

In this section, we explain how we select the studied projects and

construct the database that we use in our analyses.

2.1 Studied Projects

To fulfill our goal of studying CI practices in both ML and non-ML

projects, we started selecting the dataset proposed by Gonzalez

et al. [4] which was revised by Rzig et al. [9]. This is a curated

dataset of 4,031 ML projects and 4,076 non-ML projects hosted on

GitHub . The ML projects category comprises ML frameworks

and libraries such as scikit-learn, and ML applications such as

Faceswap. These projects leverage ML techniques or components

and serve specific user needs or have general-purpose utility. In

contrast, the non-ML projects category is composed of traditional

software applications, including websites, desktop or mobile appli-

cations, and more. Notably, these non-ML projects are characterized

by their absence of ML-based components in both design and func-

tionality. We then conducted a comprehensive analysis by applying

a series of filters to the initial dataset provided by Rzig et al. [9].

The selection process, as shown in Figure 1, involved the following

steps:

Step 1: Selecting projects updated within 2023 with default
branch as ‘main’ or ‘master’. We began the process by using

the GitHub API to identify projects updated within 2023. Projects

with a default branch different than ‘main’ or ‘master’ (e.g., ‘dev’,

‘development’, or ‘draft’) were excluded due to them not represent-

ing a user-intended project. The search was conducted using the

GitHub API in June 2023, resulting in 6,915 projects (3,082 ML and

3,833 non-ML).

Step 2: Selecting projects with GitHub Actions workflow
configuration files. To select projects using GitHub Actions ,

we excluded projects lacking at least one workflow configuration

file. This is a YAML file stored within the ‘.github/workflows/’ folder

of a GitHub repository, which defines a series of automated steps

to be executed when specific events occur in the repository (i.e.,

push or pull request). This reduced the number of projects to 1,053

(553 ML and 500 non-ML).

Step 3: Selecting projects with active GitHub Actions CI
Workflows. Among the remaining projects, our next step was to

identify those with at least one active GitHub Actions CI workflow.

A repository can have multiple Workflows. However, unlike con-

ventional CI/CD services, GitHub Actions Workflows can be used

not only for executing test suites or deploying new releases (i.e., CI-

related practices), but also to facilitate other software development

activities, such as communication, code review, and dependency

management [22]. EachWorkflow may serve different purposes, for

instance, one might handle CI tasks, such as compiling the codebase

and executing the test suite, while another might perform tasks that

extend beyond the scope of CI, like welcoming new contributors

with their first pull request or even generating documentation auto-

matically from code comments. In this study, our analysis centers on

projects that have GitHub Actions workflows associated with CI,

which we call CI workflows. Forworkflows to be classified as CI work-

flows, they must meet the following criteria: (i) Exclusion of doc-

umentation references: The workflow name or filename should

not contain any documentation-related words, such as “docs.yml"

or “documentation.yaml"; (ii) Inclusion of code change event

triggers: The workflow should be triggered by either a pull_request

or push event; (iii) Inclusion of CI-related terminology: The

workflow configuration file must incorporate a CI-related word in

666

How do Machine Learning Projects use Continuous Integration Practices? An Empirical Study on GitHub Actions MSR ’24, April 15–16, 2024, Lisbon, Portugal

Figure 1: An overview of the project selection process.

either the job or step name. CI-related terms encompass various

spellings, including “continuous integration,” “continuousintegra-

tion,” “continuous-integration,” “continuous_integration,” or simply

“test.” This inclusivity acknowledges that a fundamental task for

any CI workflow is the execution of the test suite.

To verify whether our workflow classification met our goals, we

manually inspected a sample of 100 workflows from 74 projects

of varying sizes. The inspection aimed to validate the criteria for

automatically classifying the workflows as CI or non-CI. The first

author manually inspected the workflow sample by reading their

configuration files and assessed their content against the criteria.

The results were validated with the third and fourth authors. Our

criteria achieve 86.7% recall and 100% precision. Since there was

no instance where a non-CI workflow was misclassified as a CI

workflow, we leverage our criteria to select only projects that have

CI workflows. 160 projects remained (123 ML and 37 non-ML).

Step 4: Applying a threshold of at least 100 runs for CI
workflows. We further filtered out projects that had fewer than

100 Runs in their GitHub Actions CI workflows. This threshold,

which was inspired by previous studies [13, 15], seeks to ensure

a significant volume of data for in-depth analysis. The adoption

of a similar threshold in these studies reinforced our choice. 108

projects remained after this step (88 ML and 20 non-ML projects).

Step 5: Selecting a minimum 6-month GitHub Actions CI
workflow history. In order to ensure a substantial volume of

monthly data intervals, we excluded projects containing less than 6

months of GitHub Actions CI Workflow historical data. We com-

puted this criterion by calculating the period between the first and

last Run of the GitHub Actions CI workflow for each project. 107

projects remained after this step (87 ML and 20 non-ML projects).

Step 6: Addressing the ML and non-ML project imbalance.
Given that we observed an imbalance between ML and non-ML

projects during our project selection process, and to address this

imbalance, we conducted an additional search on the GitHub API.

We used an approach similar to Gonzalez et al. [4], selecting top

projects based on stars (initially top 100, then increasing by 50).

On these projects, we applied the filtering criteria of a minimum

of 100 runs, 5 stars or forks, and updates in 2023. By adhering

to these criteria, we successfully curated a well-balanced dataset

after filtering the top 350 projects. These criteria are aligned with

best practices for filtering out inactive or non-software repositories

[23, 24]. Subsequently, the first author manually reviewed each

project’s repository page to classify it as ML or non-ML and exclude

Figure 2: An overview of the data collection process.

unsuitable projects (e.g., toy projects or tutorials). We identified

and removed 9 projects that were not suitable for our analysis. For

instance, the repository “public-apis/public-apis” is a collective list

of free APIs for use in software and web development, which is

not a real software development project. In contrast, despite the

option to exclude ML projects, we chose inclusivity as we found

influential ML projects like “huggingface/transformers" and “pandas-

dev/pandas", a robust data analysis library for Python [25].

We then applied the same filtering criteria used in the initial

dataset (Steps 1 to 5) to these new projects. The criteria resulted in

78 projects (6 ML and 72 non-ML). The additional non-ML projects

span diverse categories, including Static Site Generators, Cloud

Tools, Web/Mobile Frameworks, package management, etc. As such,

we consider that the non-ML projects are comparable with our set

of ML projects in terms of complexity. Furthermore, we mitigate the

effects of potential confounds in our analysis, for example, choosing

a similar amount of small, medium, and large-sized projects for both

ML and non-ML projects. Combined with the initial 107 projects

filtered from the work of Rzig et al. [9], our final dataset contains

185 projects (93 ML and 92 non-ML). This balanced dataset allows

us to analyze CI practices in both ML and non-ML projects.

2.2 Data Collection

After the selection of our studied projects, we begun the process of

collecting project metadata. The data collection process is shown

in Figure 2. Each step of the process is detailed below.

Step 1: Collection of projectsmetadata.Weuse theGitHubAPI

to collect general information for each studied project, such as pri-

mary language, size, and number of stars and forks, and to collect

metadata related to the usage of GitHub Actions within these

667

MSR ’24, April 15–16, 2024, Lisbon, Portugal Bernardo et al.

projects. For instance, we systematically compiled all active GitHub

Actions workflows for the selected projects. Additionally, we re-

trieved metadata associated with each individual Workflow Run

within CI workflows that have over 100 Workflow Runs. This se-

lective approach concentrated solely on completed Workflow Runs

triggered by push or pull_request events, thereby excludingWork-

flow Runs related to activities like pull request comments. This is

because we intended to only analyzeWorkflow Runs associated with

code changes within the projects. Finally, we used the GitHub API

to collect all the commit and PR history of the projects within their

default branch to the period after the adoption of GitHub Actions.

Moreover, we use the CodeTabs API1 to collect the LOC (Lines

of Code) metric for the analyzed projects. This API incorporates the

boyter/scc2 library, a robust tool for precise LOC counting. The

CodeTabsAPI retrieves the LOCmetric from any public GitHub repos-

itory with a size not greater than 500 Mb. A total of 8 of the

studied projects exceeded this limit, then we manually used the

boyter/scc library to calculate the LOC size of such projects. We use

the LOC to categorize our projects into three size groups: small

(𝐿𝑂𝐶 <= 10, 000), medium (10, 000 < 𝐿𝑂𝐶 <= 100, 000), and large

projects (𝐿𝑂𝐶 > 100, 000). We use these groups to perform compar-

isons in our analyses, which align with the methodology used by

Felidre et al. [18]. In Table 1, we provide the general information

(e.g., age) of the projects and the totals of analyzed commits, pull

requests, coverage builds, and CI builds.

Step 2: Dataset Preprocessing.After the collection of the project’s
metadata, we created a MySQL schema to systematically store and

organize information related to entities such as GitHub reposito-

ries, GitHub Actions workflows, workflow runs, pull requests,

and commits. With the project’s metadata securely stored within

the database, we used SQL queries to create pre-processed CSV

datasets. These datasets were crafted specifically to include only

the essential metadata critical to our subsequent analyses.

Step 3: Compute Metrics. We use data from Steps 1 and 2 to

compute the four CI metrics used in our analyses. To calculate

the metrics, we segment the project history into periods of 30

days (one month), see Figure 3. In our analysis, we only consider

projects containing at least 6 monthly intervals of analysis where

GitHub Actions CI workflows are consistently used. Additionally,

we exclude from our analysis the data related to the period of 15

days after the first CI workflow run, as it is already reported in the

literature as an unstable period of adaptation of the usage of a CI

service [14]. The formulas used to calculate the metrics associated

with each CI practice were inspired by the work of Santos et al.

[19] and Felidré et al. [18], and were collected from the GitHub,

Coveralls [26], and CodeCov [27] APIs, which are web-based

services that provide code coverage metrics for software projects.

The description of each metric is presented in the following along

with its data source (highlighted within brackets).

• Commit Activity [GitHub]: This metric represents the rate

of days in the monthly interval that had at least one commit

[19]. It ranges from 0 to 1, with 0 indicating that 0 commits

were performed throughout the days of the time period,

1https://codetabs.com
2https://github.com/boyter/scc

Figure 3: Periods of Analysis.

whereas 1 indicates that at least one commit was performed

in each day of the time period.

• Build Duration [GitHub]: It quantifies the median duration

of CI workflow runs in minutes, computed as the difference

between the run updated at timestamp and the run started

at timestamp. The duration is computed exclusively for suc-

cessfully completed CI workflow runs. Failed workflow runs

are excluded from this computation as they usually have a

shorter build duration, stopping when the failure occurs.

• Time to Fix Broken Build [GitHub]: This metric represents

the median time in hours that broken CI workflow runs

remain in a broken state within the monthly interval. When

a CI workflow run breaks, we compute the duration in hours

until the workflow run returns to the “success” state. If a

broken workflow run does not revert to the “success” state

by the end of the monthly period, then this run is excluded

from our analysis.

• Test Coverage [Coveralls/CodeCov]: It quantifies the per-
centage of code in a project that is covered by automated

tests. This metric is collected from the last available build

of a project in the Coveralls or CodeCov platforms. It is

measured on a scale from 0 to 100, where 0 indicates that no

line of code is covered by tests, and 100 indicates that every

line of code is exercised by tests.

Step 4: Perform Analysis. The curated datasets produced in

Step 3 are the basis for our subsequent quantitative and qualita-

tive analyses. We use the generated CSV datasets that incorporate

computed CI practices’ metrics, which are used as inputs for our

statistical analyses. The analyses are performed using R. All the
scripts and datasets we used in our analyses are available in our

online Appendix3 to the interested reader.

2.3 Research Questions Design

RQ1. To what extent do CI practices adoption
differ between ML and non-ML projects?

Motivation. Adopting CI is beyond the sole implementation of a

CI service, requiring effective use of recommended CI practices

[12, 18, 28]. As such, the intricate nature of ML, involving complex

algorithms and data, might present unique challenges in adopting

CI practices effectively. For example, it might be harder to maintain

shorter build duration in ML projects because they require more

3https://ci-ml-msr.github.io - Reproduction Package website.

668

How do Machine Learning Projects use Continuous Integration Practices? An Empirical Study on GitHub Actions MSR ’24, April 15–16, 2024, Lisbon, Portugal

Table 1: Projects general information.

size

projects median age contributors commits pull requests coverage builds CI builds

ML nonML ML nonML ML nonML ML nonML ML nonML ML nonML ML nonML

small 8 14 5.6 7.5 28 73 5497 6103 2425 4511 811 1054 3200 4049

medium 44 38 5.4 9 69 368 37081 34545 20900 31766 6736 7647 35678 32983

large 41 40 6.6 8.7 187 624 100700 128988 110704 84506 28770 30086 161577 111992

total 93 92 5.7 8.4 102 387 143278 169636 134029 120783 36317 38787 200455 149024

complex tests. Given the significant knowledge gap regarding the

specific application of CI practices within ML projects, we start

our investigations by comparing CI metrics from ML and non-ML

projects.

Approach. To address RQ1, we use a dataset comprised of 93

ML projects and 92 non-ML projects, as detailed in Section 2.1.

First, we compute the median for each of the four CI practices per

project, as the data for each project is provided in monthly intervals.

However, not all projects have test coverage data available in the

CodeCov or Coveralls platforms. For the test coverage metric, we

used data from 59 projects (33 ML and 26 non-ML). To assess the

statistical differences in the investigated CI practices between ML

and non-ML projects, we used Mann-Whitney-Wilcoxon (MWW)

tests [29], followed by Cliff’s delta effect-size measurements [30].

This analysis was performed while considering project sizes (small,

medium, large). The MWW test is a non-parametric test with a null

hypothesis assuming that two distributions come from the same

population (𝛼 = 0.05). Cliff‘s delta is a non-parametric effect-size

metric to quantify the magnitude of differences between the values

of two distributions. A higher Cliff’s delta value indicates a greater

disparity between distributions. In interpreting Cliff’s delta, we

use the thresholds outlined by Romano et al. [31]: 𝑑𝑒𝑙𝑡𝑎 < 0.147
(negligible), 𝑑𝑒𝑙𝑡𝑎 < 0.33 (small), 𝑑𝑒𝑙𝑡𝑎 < 0.474 (medium), and

𝑑𝑒𝑙𝑡𝑎 >= 0.474 (large). Positive Cliff’s delta values show how larger

are the values of the first distribution, while a negative Cliff’s delta

indicates the opposite.

RQ2. What are the evolution trends of build
duration and test coverage within ML and
non-ML projects?

Motivation. The results of RQ1 show that ML projects tend to

require longer build duration compared to non-ML projects and

have less test coverage in the case of medium-sized projects. As

such, in RQ2, we analyze how the build duration and test coverage

of ML and non-ML projects evolve over time. This analysis allows

us to understand better the specificities of the differences observed

in RQ1. For example, do ML projects have an increasing trend of

longer build duration? Or has it always been the case since the

beginning of the ML projects?

Approach. To address RQ2, we use the same dataset of 185

projects (93 ML and 92 non-ML) used in RQ1. We compare the

ML projects against the non-ML projects to study the potential

differences in the build duration and test coverage trends. Both

the evolution of build duration and test coverage over time can

be interpreted as time series data. Therefore, we use the Dynamic

Time Warping (DTW) technique to measure the similarity between

different time series, allowing for effective clustering of projects’

time series.

The DTW algorithm [32] is a robust method used to measure the

similarity between time series by aligning their offsets [33, 34]. This

alignment allows for grouping similar time series even if they span

different time periods. Before applying the clustering algorithm, it

is necessary to determine the optimal number of clusters to obtain

high-quality clusters (i.e., clusters that better represent the trends)

[35]. To achieve it, we use the gap statistics [36] by varying the num-

ber of clusters from 2 to n-1, where n is the number of projects per

category. We use the clusgap algorithm from cluster R package
[37] to calculate the gap statistics. After grouping the projects’ time

series into clusters, we qualitatively analyzed the cluster’s centroid

to determine their trend, as employed by previous work [17, 35],

therefore we don’t use specific slope boundaries. These trends were

classified as Increasing, Decreasing, or Maintaining. Lastly, we con-

ducted a thorough analysis to determine the proportions of small,

medium, and large ML and non-ML projects associated with each

identified trend. This comprehensive approach allowed us to discern

nuanced patterns within the build duration trends, shedding light

on the complex nature of these projects’ development processes.

RQ3. What do ML and non-ML developers discuss
about CI in their projects?

Motivation. Considering the notable differences observed between
ML and non-ML projects concerning CI in RQ1 and RQ2, we delve

deeper in RQ3 to better understand the discussions about CI in both

ML and non-ML projects. Our goal is to investigate whether ML

and non-ML projects differ in their discussions concerning the use

of CI. For instance, ML projects may discuss more build issues, as

we observed that they typically require a longer build duration (see

RQ1).

Approach.To investigate RQ3, we adopted the qualitativemethod

of document analysis [38, 39]. This approach consists of coding

document content into themes. One of the key advantages of docu-

ment analysis is that documents are “non-reactive". This implies

that researchers can read and revisit documents multiple times

without being changed by the research process. Our focus is on

discussions about CI among developers in both ML and non-ML

projects. As pull requests (PRs) encapsulate developers’ discussions

related to committed code, project infrastructure, and practices,

we consider the whole sequence of conversations (i.e., comments)

associated with a PR and the PR itself as a document, which is

used as the input for our document analysis. Additionally, given

that CI workflows are typically triggered after a push or PR sub-

mission in open-source projects [40], the CI result for a PR may

669

MSR ’24, April 15–16, 2024, Lisbon, Portugal Bernardo et al.

yield valuable discussions regarding CI among developers. To iden-

tify these CI-related conversations, we used a regular expression

(Listing 1) to detect CI-related terms in PR comments. Additionally,

we aim to exclude bot-generated comments from our analysis by

filtering out comments from GitHub users with known bot logins

(e.g., coveralls) or logins suggestive of bot users (e.g., vue-bot). List-

ing 2 represents the regular expression employed to eliminate bot

comments from our analysis.

Listing 1: Regex to detect CI-related terms in PR comments.

\ b (c i | c on t inuous i n t e g r a t i o n | devops | dev ops |

workflow (s) ? | b u i l d (? : s | ing) ? | p i p e l i n e (s) ?) \ b

Listing 2: Regex to detect PRs comments from bot users.

\ b (bo t | c i | codecov | c o v e r a l l s | g i thub − a c t i o n s |

dependabot | bo r s | s e l dondev | app leboy | n e t l i f y |

v e r c e l | a zu re | p i p e l i n e (s) ?) \ b

We identified 11,549 pull requests (7,062 from ML projects and

4,487 from non-ML projects) created post-GitHub Actions adop-

tion, containing CI-related comments from non-bot users across

our 185 examined projects. For a balanced representation and to

make our manual analysis feasible, we generated two represen-

tative samples—365 PR from ML projects and 354 from non-ML

projects—employing a Stratified Random Sample (SRS)[41] strategy

with a 95% confidence level and a 5% confidence interval. After

calculating the sample size, we considered the variability of PRs

per project. Therefore, our stratification criteria aimed to maintain

the proportion of PRs per project within our population.

To analyze the 719 PRs of our stratified sample, we employ an

inductive thematic analysis, which is designed for identifying, ana-

lyzing, and reporting themes within qualitative data [42], following

the guidelines by Nowell et al [43]. The first step in the thematic

analysis is the coding of our data. This step involves attaching

codes to any piece of relevant qualitative data collected (i.e., CI

discussion) from the document. The first author conducted open

coding sessions for all 719 PRs, the second author independently

coded 365 PRs from ML projects, and the third author coded 354

PRs from non-ML projects. All PRs were coded by two authors, mit-

igating bias. In conjunction with the first author, the fourth author

collated all codes into a consistent set of refined codes, which often

involved adding or merging the codes generated independently by

the other authors. The first author then organized these refined

codes into themes through axial coding, a process double-checked

by the second author. We adopted a reflexive thematic analysis [44],

therefore we do not prioritize coding reliability at this stage (i.e., we

did not calculate the inter-rater agreement between the annotators).

This choice aimed at generating themes in developer discussions

without the constraint of rigid agreement metrics. It is important

to note that this analysis aims to broaden our comprehension of

how developers discuss CI in ML and non-ML projects. Our focus

is on generating qualitative results that contribute to a deeper un-

derstanding of CI discussions in both ML and non-ML projects. The

results of this thematic analysis, including codes and themes, are

presented in the results section.

3 RESULTS

RQ1. To what extent do CI practices adoption
differ between ML and non-ML projects?

ML projects consistently require longer build durations com-
pared to non-ML projects. Figure 4 shows the build duration dis-

tributions per project category (ML and non-ML) and project-size

category (small, medium, and large). The MWW test and Cliff’s

delta results are also shown in Figure 4.

Small ML projects require a significantly longer median build

duration (10.3 minutes) compared to small non-ML projects (0.813

minutes). The MWW test indicates a significant difference (𝑝 =
0.00298, with a large Cliff’s delta of 0.786). Regarding medium-

sized projects, ML projects require a median of 13 minutes for

builds, while non-ML projects typically require a median of 5.54

minutes. Our tests indicate a significant difference (𝑝 = 0.000566,
with a medium Cliff’s delta = 0.437). As for large-sized projects, ML

projects require a median build duration of 21.4 minutes, compared

to 17.4 minutes in non-ML projects. However, our tests reveal that

this difference is not statistically significant (𝑝 = 0.24). Overall,
our findings suggest that ML projects tend to require longer build

durations, especially in small-sized and medium-sized projects.

We then noticed that more than half (48 out of 93) of the ML

projects have Python, a dynamically typed language, as their main

language, while only 14% (13 out of 92) of the non-ML projects have

Python as their main language. Overall, the majority (≈ 66%) of the

ML projects are based on dynamically typed languages (e.g. Python,

JavaScript), while most non-ML projects (≈ 54%) use statically

typed languages (e.g., TypeSript, Go). As static typing allows a com-

piler to perform more optimizations, programs written in statically

typed languages tend to be faster than those written in dynam-

ically typed ones [45].4 Thus, we conjectured that ML projects

may require longer build durations than non-ML ones because ML

projects are mostly written in dynamically typed languages, mainly

in Python, and this would imply in more time for test execution.

To confirm this hypothesis, we compared the building dura-

tion of projects based on their programming language type (static

or dynamic). For example, we compared the building duration of

medium-sized ML projects based on static-typed languages with

medium-sizedML projects based on dynamic-typed languages. Con-

trary to our expectation, we did not find a significant statistical

difference (i.e., MWW test 𝑝 − 𝑣𝑎𝑙𝑢𝑒 <= 0.05) in the building dura-

tion of ML and non-ML projects of similar size due to the language

type system used in the project.

We then performed a second analysis, in whichwe focused on the

building duration difference between similar-sized ML and non-ML

projects based on static and dynamic typed languages. This analysis

specifically targeted medium-sized ML and non-ML projects. We

used the MWW test to explore potential differences in build dura-

tion of medium-sized statically typed ML projects with statically

typed non-ML projects, as well as medium-sized dynamically typed

ML projects with dynamically typed non-ML projects. Small-sized

projects were intentionally excluded from this analysis because

of the limited group size resulting from categorizing small-sized

4https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html

670

How do Machine Learning Projects use Continuous Integration Practices? An Empirical Study on GitHub Actions MSR ’24, April 15–16, 2024, Lisbon, Portugal

p = 0.00298
Cliffs' d = large

p = 0.000566
Cliffs' d = medium

p = 0.24
Cliffs' d = small

10.3
0.81

12.95
5.54

21.42 17.41

0

50

100

150

200

small medium large
LOC Size

M
ed

ia
n

Bu
ild

 D
ur

at
io

n
(M

in
ut

es
)

Category
ML

No ML

Figure 4: Build Duration per project category and size.

projects based on their programming language type. This catego-

rization resulted in 4 statically typed and 5 dynamically typed ML

projects, along with 5 statically typed and 9 dynamically typed non-

ML projects. Furthermore, large-sized ML and non-ML projects

were also excluded from the analysis, as no statistically significant

difference in build duration was identified between these groups.

We found statistically significant differences both betweenmedium-

sized dynamically typed ML and non-ML projects (p-value = 0.013,
Cliffs’ delta = 0.421 (medium)), and between medium-sized stati-

cally typed ML and non-ML projects (p-value = 0.044, Cliffs’ delta =
0.445 (medium)). This variance in build duration, while controlling

for language type, suggests that there is no conclusive evidence to

support the initial hypothesis that dynamically typed languages

in ML projects lead to longer build duration compared to non-ML

projects. Therefore, it implies that other factors may contribute to

the extended build duration of ML projects, such as the computa-

tionally intensive nature of data pre-processing. The plots illustrat-

ing the build duration of medium-sized projects per programming

language type are accessible in our online appendix.

Medium-sized ML projects tend to have a lower test coverage
(83%) compared to non-ML counterparts (94%). Medium-sized

non-ML projects have a substantially higher test coverage compared

to their ML counterparts. Figure 5 shows the distributions of test

coverage per project category and size. Although large-sized ML

projects show higher test coverage levels compared to large non-ML

projects, we observe that this difference is statistically insignificant

(𝑝 = 0.217).
Moreover, we conducted a comparison of the metrics "time to

fix broken builds" and "commit activity" between ML and non-

ML projects. However, no statistically significant differences were

identified.

RQ2. What are the evolution trends of build
duration and test coverage within ML and
non-ML projects?

As we observed statistically significant differences when it comes

to build durations and test coverage in RQ1, we investigate in RQ2

potential differences in how these CI practices evolve over time

across ML and non-ML projects.

p = 0.7
Cliffs' d = medium

p = 0.00676
Cliffs' d = large

p = 0.217
Cliffs' d = small

86.32

76.4
83.24

93.86

85.63

73.76

0

30

60

90

120

small medium large
LOC Size

M
ed

ia
n

Te
st

 C
ov

er
ag

e

Category
ML

No ML

Figure 5: Test Coverage per project category and size.

Upon applying the clusgap algorithm to the build duration and

test coverage over time (in both ML and non-ML projects), we

observe distinct optimal cluster numbers. Concerning the build du-

ration metric, the clusgap algorithm suggests 10 distinct trends in

ML projects, whereas 7 distinct trends emerged in non-ML projects.

Concerning test coverage, 2 trends emerged in ML projects and 5

trends emerged in non-ML projects.

Figures 6 and 7 illustrate the distinct trends of build duration

for ML and non-ML projects. Our focus is on clustering projects

with similar build duration trends rather than observing the raw

build duration values. To enable a meaningful comparison, build

duration was normalized for each project, given that projects of

different sizes tend to require varied build durations (i.e., smaller

projects typically require shorter build durations than larger ones).

Each cluster’s trend is represented by a red line indicating a regres-

sion linear model calculated using its centroid, facilitating manual

classification of trends. We classify each cluster trend as increas-

ing, decreasing, or maintaining for the purpose of interpreting the

results. After clustering build duration trends, we categorized the

projects based on size and trend type. Figure 8 shows the ratios of

small, medium, and large projects that have increasing, decreasing,

or maintaining build duration trends.

Small and medium-sized ML projects exhibit more increas-
ing build duration trends compared to non-ML projects. Our
results reveal a consistent higher proportion of increasing build

duration trends among small and medium-sized ML projects. In

smaller ML projects, a significant 75% manifest rising build dura-

tion trends. Similarly, 61.4% of medium-sized ML projects display

increasing build duration trends. Conversely, small and medium

non-ML projects display relatively lower percentages of increasing

build duration trends, standing at 35.7% and 44.7% respectively. Al-

though these projects demonstrate relative success in maintaining

or decreasing build duration trends over time, there is still room

for improvement in their build processes.

Large ML projects represent a lower proportion of projects
displaying an increasing trend (51.2%) compared to non-ML
projects (65%). The proportion of projects manifesting increas-

ing build duration trends diminishes as ML projects expand in

size (small: 75%, medium: 61.4%, large: 51.2%). In contrast, non-ML

projects exhibit an opposite tendency, with increasing proportions

671

MSR ’24, April 15–16, 2024, Lisbon, Portugal Bernardo et al.

−2

−1

0

1

2

Increasing
Cluster 1

−2
−1

0
1
2
3

Decreasing
Cluster 2

−2
−1

0
1
2

Maintaining
Cluster 3

−2.5

0.0

2.5

5.0
Decreasing
Cluster 4

−2
−1

0
1
2
3

Maintaining
Cluster 5

−1
0
1
2
3

Maintaining
Cluster 6

−3
−2
−1

0
1
2
3

Increasing
Cluster 7

−2

−1

0

1

2

Maintaining
Cluster 8

−2
−1

0
1
2
3

Maintaining
Cluster 9

−2

0

2

Increasing
Cluster 10

Figure 6: Build Duration Clustering Trends’ Patterns in ML

Projects.

−2.5

0.0

2.5

Increasing
Cluster 1

−2

0

2

Decreasing
Cluster 2

−1
0
1
2
3
4

Increasing
Cluster 3

−2

0

2

Maintaining
Cluster 4

−2

−1

0

1

2

3
Maintaining
Cluster 5

−4

−2

0

2

Increasing
Cluster 6

−2
−1

0
1
2
3

Increasing
Cluster 7

Figure 7: Build Duration Clustering Trends’ Patterns in non-

ML Projects.

observed as project sizes grow (small: 35.7%, medium: 44.7%, large:

65%). Nevertheless, both types large-sized projects represent sub-

stantial proportions of rising build duration trends.

BothMLandnon-MLprojectsmanifest a predominant trend
of maintaining test coverage over time. While we found a sta-

tistically significant difference in test coverage between medium-

sized ML and medium-sized non-ML projects in 𝑅𝑄1, no noticeable

differences in test coverage trends were observed between these

project types. Specifically, medium-sized non-ML projects consis-

tently manifest a maintaining test coverage trend, with all projects

with a median coverage rate above 75%. In contrast, 46.6% (7/15)

of the ML projects manifest a test coverage rate lower than 75%,

25%

75%

35.7%

35.7%

28.6%

15.9%

61.4%

22.7%

21.1%

44.7%

34.2%

24.4%

51.2%

24.4%

17.5%

65%

17.5%

small medium large

ML No ML ML No ML ML No ML

0%

25%

50%

75%

100%

Pe
rc

en
ta

ge

Build Duration Trend
Increasing

Decreasing

Maintaining

Figure 8: Clustering trends per project category and size.

with two of them exhibiting median coverage rates of 21% and 34%.

Moreover, these ML projects with low test coverage rates also lack

rising trends of test coverage. The plots that represent the cluster

trends for test coverage are available in our online appendix.

RQ3. What do ML and non-ML developers discuss
about CI in their projects?

Figure 9 presents the CI discussions (i.e., the themes) that emerged

from our document analysis. The central theme is CI discussion,

which is the main objective of this RQ. The second-level (or axial)

themes comprise discussions related to CI: CI build execution and

status; CI testing and code quality; CI infrastructure; CI pipeline

configuration; and CI on software development process. The third-

level themes are more specific and are grouped based on their

relationship with the second-level themes. The thickness of the

edges is based on the number of times the third-level theme emerged

during the thematic analysis. We provide in-depth details about

each theme that emerged in our thematic analysis in our online

appendix.

In the first exploratory analysis, we observed similar engage-

ment levels in developer comments on CI discussions of ML and

non-ML projects (ML: median of 6 comments; non-ML: median

of 7 comments) and in the number of codes associated with CI

discussions (ML: median of 2 codes, non-ML: median of 2 codes).

Both non-ML and ML projects commonly discuss themes related to

CI Build Execution and Status, CI Infrastructure, CI Pipeline Configu-

ration, and CI Testing and Code Quality. Despite these similarities,

we found a wider variety of CI-related themes in ML projects (73

themes) compared to non-ML projects (23 themes).

Interestingly, discussions on the impact of CI on the software de-

velopment process were exclusive to ML projects, including themes

such as (mis)trust in CI, CI as a decision-making tool, and CI as a

quality gate. Notably, comments such as “going to hold off on review

until the tests run successfully” were coded as CI acting as a quality

gate. Additionally, the (mis)trust in CI code, which emerged only

for ML projects, indicates the developers’ uncertainty about the

effectiveness of their CI system in catching project-specific bugs: “I

don’t think our CI will catch all such bugs”.

672

How do Machine Learning Projects use Continuous Integration Practices? An Empirical Study on GitHub Actions MSR ’24, April 15–16, 2024, Lisbon, Portugal

(a) CI discussions in ML projects. (b) CI discussions in non-ML projects.

Figure 9: CI discussions in ML and non-ML projects.

Our analysis also highlights a significant convergence in key CI

discussion themes in both ML and non-ML projects, with topics

like CI status tracking, CI debugging, CI triggering, CI configuration,

fixing broken CI, CI local reproduction, and test addition. This empha-

sizes a shared commitment to maintaining code quality through

robust testing practices across diverse software development do-

mains. However, a notable distinction arises in the prevalence of

the theme relatedness of failures, particularly in ML projects, where

it ranks as the third most discussed theme. In contrast, it holds

the eighth position in discussions within the non-ML domain. This

theme sheds light on concerns about potential false positives in

CI systems, where although a build is broken, developers deem

that such failure is not related to their current push. These false

positives not only introduce frustration but also result in the expen-

diture of valuable time and effort by developers and maintainers

in addressing issues unrelated to their code modifications. For in-

stance, a developer of the scikit-learn project expressed frustration

about build breakages unrelated to a PR, stating: “I would not want

PRs to have failing tests because of a poor random seed that is unre-

lated to the PR itself. That feels like a poor contributor experience”.

This finding aligns with our earlier discovery about the theme of

(mis)trust in CI, which exclusively emerged in ML projects. Both

themes suggest a unique set of challenges in ML projects regarding

the effectiveness and reliability of their CI systems, emphasizing

the need for a more nuanced and tailored approach to CI practices

in this specific domain.

4 DISCUSSION AND IMPLICATIONS

Interpreting differences in CI practices between ML and non-

ML projects. In RQ1, we observed that ML projects consistently

require longer build duration compared to non-ML projects. No-

tably, a significant portion of ML projects (48 out of 93) primarily

use Python, a dynamically typed language, in contrast to non-ML

projects where only 14% (13 out of 92) use Python. The prevalence

of dynamically typed languages in ML, known for potential runtime

flexibility but longer running times, may be a contributing factor

to the observed longer build duration. Moreover, possible factors

contributing to this disparity include the computationally intensive

nature of data preprocessing in ML projects, which adds overhead

to the build process. Challenges in parallelization during the build,

especially in workflows with large datasets, may further contribute

to extended build times. The diverse testing requirements of ML,

involving numerous model configurations and data inputs, can also

lead to longer builds due to the need for extensive validation. In

future research, we intend to study in more depth the impact of

these factors on the build duration of ML projects.

Additionally, we found that medium-sized ML projects tend to

exhibit lower test coverage (83%) compared to their non-ML coun-

terparts (94%). The testing landscape in ML projects often involves

data-driven testing, where the diversity and complexity of data sce-

narios present challenges in achieving comprehensive test coverage

[46]. Generating representative datasets for testing all possible sce-

narios can bemore demanding inML projects. Moreover,MLmodels

frequently employ different algorithms, each with unique character-

istics, adding complexity to achieving comprehensive test coverage

across diverse algorithms and their combinations. Additionally, ML

systems consist of multiple interconnected components, such as

data preprocessing, model training, and deployment [47]. In addi-

tion to that, recent research is exploring new ways of coverage for

ML systems [46]. Achieving high test coverage across the entire

integrated system becomes challenging due to the intricacies of

testing interactions between these components and the nature of

ML systems that maintain decision logic learned from training data.

673

MSR ’24, April 15–16, 2024, Lisbon, Portugal Bernardo et al.

Furthermore, the observed similarity in “time to fix broken

builds" and “commit activity" metrics across both ML and non-

ML projects suggests a degree of uniformity in certain development

challenges. The finding implies that, despite the distinct nature of

ML projects, developers do not exhibit significantly different re-

sponse times in resolving build issues for ML projects compared to

non-ML projects. Consequently, the data suggests that build issues

do not inherently pose a more severe challenge in ML projects.

This insight may guide practitioners in allocating resources and

prioritizing efforts to address development challenges that are more

distinctive to the specific characteristics of ML projects (i.e., build

duration).

Intriguingly, in RQ2, we noted a distinctive trend in the build

duration of ML and non-ML projects: while non-ML projects tend to

exhibit an increasing trend with project size (small, medium, large),

ML projects show a divergent pattern as they expand. Considering

that ML projects require longer build durations compared to non-

ML projects (see RQ1), with build duration taking more than 10

minutes even for small projects, it might be the case that project

maintainers of ML projects could lead to continuous efforts (i.e.,

workflow parallelization, caching) to enhance efficiency and control

increasing trends as the project grow.

Interpreting developers’ discussions about CI. In our quali-

tative analysis (RQ3), we find that both ML and non-ML projects

commonly discuss themes related to CI Build Execution and Status,

CI Infrastructure, CI Pipeline Configuration, and CI Testing and Code

Quality, which demonstrate a commitment to effective CI practices.

However, we found a wider variety of CI-related themes in ML

projects (73 themes) compared to non-ML projects (23 themes). Sev-

eral factors may contribute to this diversity in CI-related discussions

within ML projects. For instance, ML projects might attract devel-

opers with other backgrounds than software engineering, including

data scientists and ML specialists. This diversity in expertise could

lead to a more comprehensive discussion of CI practices tailored

to the specific needs of ML development. Additionally, the intri-

cate workflows in ML, involving stages such as data preprocessing,

and model training and deployment, may lead to a more extensive

range of CI-related discussions addressing diverse challenges at

each stage. Hence, a future study may investigate how the varied de-

velopment backgrounds of ML project developers impact the depth

of CI discussions in their projects. Specifically, exploring whether

developers with diverse skills or more CI experience contribute to

the richness of CI-related discussions in ML projects.

Additionally, a notable disparity emerges in the prevalence of the

“relatedness of failures" theme within CI discussions of ML projects.

The prominence of this theme in ML projects suggests a potentially

higher incidence of false positives in their CI systems. Moreover,

false positives might contribute to developers’ frustration when

failing tests are not directly linked to their code modifications,

indicating a perceived inefficiency in the CI process. This difference

in the occurrence of false positives in CI systems of ML projects

may be associated with the intricate workflows and dependencies

inherent in ML projects. However, further research is needed to

comprehensively understand the root causes of false positives in

CI systems, especially within the context of ML projects. Hence, a

future study may investigate how the development backgrounds

of developers of ML projects impact the depth of CI discussions in

their projects.

Implications for practice and research. Our results have

implications for practice. Firstly, the observation of longer build

duration in ML projects compared to non-ML projects underscores

the importance of addressing unique challenges posed by ML work-

flows. Project maintainers of ML projects should focus on con-

tinuous efforts, such as workflow parallelization and caching, to

enhance efficiency and control the increasing build duration trends,

especially as the projects grow in size. This highlights the impor-

tance of proactive optimization strategies in ML project develop-

ment processes to mitigate the challenges associated with longer

build duration [48]. Furthermore, the prevalent use of dynamically

typed languages in ML projects, particularly Python, should prompt

project maintainers to explore strategies for minimizing compila-

tion times.

The lower test coverage observed in medium-sized ML projects

compared to non-ML counterparts emphasizes the need for tailored

testing approaches in the ML domain. Practitioners should recog-

nize the intricacies of data-driven testing in ML projects, where

diverse and complex data scenarios pose challenges for achieving

comprehensive test coverage.

Furthermore, acknowledging the prominence of discussions on

false positives in CI outcomes within ML projects, project maintain-

ers—particularly those in the ML domain—can proactively assess

whether their projects’ CI systems are susceptible to this issue. This

heightened awareness enables practitioners to implement targeted

strategies for mitigating false positives, thereby fostering a more

reliable and efficient CI environment.

5 THREATS TO VALIDITY

Construct validity.We define CI Workflows as GitHub Actions

workflows that run a CI pipeline. To identify the workflows that rep-

resent CI workflows, we looked for actions that contain CI-related

words (such as ‘test’ or ‘continuous integration’) in the job or step

name of their configuration file. However, CI workflows may not

match this criterion but execute a CI pipeline (i.e., build and run

a test suite of a system). We manually inspected the configura-

tion files of a random sample of 100 GitHub Actions workflows

and compared the sample with the criterion’s result. Our selected

criterion achieved 86.7% recall and 100% precision.

Internal validity. We started by using a dataset containing ML

and non-ML GitHub projects provided by the work of Gonzalez

et al. [4], which acknowledges that their project selection criteria

may lead to false positives and negatives. Rzig et al. [9] revised

Gonzalez et al. [4] dataset, confirming that their projects are real

projects involving ML, filtering out toy projects and tutorials. The

projects selected for our study were extracted from the Rzig et

al. [9] dataset which provides a more curated list of ML and non-

ML projects that adopted CI practices. Additionally, for gathering

coverage information, we used the Coveralls and Codecov APIs,

and for obtaining the number of lines of code in the studied projects,

we relied on the CodeTabs API. It is important to notice that, as

a proprietary third-party service, we acknowledge that we had to

depend on its output without direct control over the data collection

process.

674

How do Machine Learning Projects use Continuous Integration Practices? An Empirical Study on GitHub Actions MSR ’24, April 15–16, 2024, Lisbon, Portugal

Moreover, we recognize that the conclusions drawn from our

analysis depend on project selection. To ensure fairness, we care-

fully curated comparable sets of ML and non-ML projects. Our

study includes diverse ML projects (tools and applications) and

non-ML projects (e.g., Static Site Generators, Cloud Tools, Web/Mo-

bile Frameworks, package management, etc). As such, we consider

that the sets of projects are comparable in terms of complexity.

Additionally, we tried to minimize confounding effects by selecting

similar-sized projects in both categories. We can see in Table 1 that

for some metrics (e.g., CI builds, commits), the numeric difference

between both groups is small (less than 10%), while for others (e.g.,

median age), we have a bigger discrepancy. This may have affected

the results, but we consider that their impact does not invalidate

our findings.

In the qualitative analysis of RQ3, we recognize the potential

influence of subjective interpretations by the authors regarding

PR comments related to CI discussions. To mitigate this threat,

we implemented a rigorous process involving peer review of the

codes and themes extracted through document analysis. Two dis-

tinct authors independently coded each document (i.e., PR and its

comments) in our analysis. Furthermore, a third author consoli-

dated the diverse codes into a new set, resolving any discrepancies

that emerged between the independently generated codes. This

approach enhances the robustness and reliability of our qualitative

findings.

External validity.We focus our analysis on 185 public reposi-

tories from GitHub. All projects were set up to use GitHub Ac-

tions as their CI service. We acknowledge that we cannot gener-

alize our results to other coding hosting platforms (i.e., GitLab),

private GitHub projects, projects in companies, or those using

different CI services. However, we believe our study can provide

a good understanding of how CI is adopted in both ML and non-

ML projects, as we study a varied set of projects with different

programming languages and sizes.

6 RELATEDWORK

Prior research has investigated the impact of CI in the context of

open-source projects [13–17]. For example, Vasilescu et al. [13]

conducted a study with over 200 GitHub projects using Java, Ruby,

or Python as the main programming language, revealing a positive

association between the adoption of Travis CI and the number

of bugs detected by core developers. Hilton et al. [16] observed

that CI plays a pivotal role in facilitating more frequent software

releases. Furthermore, Bernardo et al. [15] found that after adopting

Travis CI, projects deliver a higher proportion of PRs per release.

Different from these works, which usually investigate the dynamics

of software development projects after adopting a CI service (i.e.,

Travis CI), our study investigates how specific CI practices are

employed in the context of ML projects.

Recent works on CI have expanded their focus beyond merely

adopting CI services, instead investigating the specific CI practices

employed by software projects [18, 19]. Felidré et al. [18] inves-

tigated 1,270 non-ML projects that use Travis CI to understand

how these projects face unhealthy CI practices, such as infrequent

commits, long time to fix builds, poor test coverage, and long build

durations. Their results show that the build is executed under 10

minutes in most of the investigated projects. Similar to the work of

Felidré et al. [18], we use the same CI practices investigated in their

study to analyze the extent to which the adoption of CI practices

differs between ML and non-ML projects. Regarding build duration,

our results for non-ML projects align with their findings, unlike ML

projects where even small projects have a median build duration

longer than 10 minutes.

Specifically in the ML domain, Rzig et al. [49] conducted a study

characterizing the usage of CI tools in ML projects. They found

that in a large dataset of popular GitHub projects (4031 ML and

4076 non-ML projects), about 37% of ML projects and 45% of non-

ML projects have adopted a CI service. Our work uses the dataset

provided by Rzig et al. [49] as the initial dataset used for filtering

ML and non-ML projects for our analysis. However, different from

their work, which focuses on projects that use Travis CI, our study

investigates projects that adopted GitHub Actions, as it emerged

as the prevailing CI service on GitHub [50]. Despite the prevalence

of CI services like GitHub Actions in ML, recent efforts aim to

create dedicated CI services for the field, considering its intricacies

(i.e., traditional testing may overfit ML models) [21]. These charac-

teristics introduce variability in the development lifecycle, which

may challenge the seamless integration of CI practices. In contrast

to prior work, our study specifically compares CI practices between

ML and non-ML projects. Also, we perform a clustering analysis

to understand the overall trend of metrics such as build duration

and test coverage over time. Finally, we uncovered specific themes

discussed by developers in both ML and non-ML projects.

7 CONCLUSION

In this work, we investigated how CI practices are applied in both

ML and non-ML Github projects. We conducted an empirical study

that quantitatively analyzed data from 185 open-source projects

from Github, comprising 93 ML projects and 92 non-ML projects.

Additionally, we conducted a qualitative analysis of a stratified

sample of 719 PRs, consisting of 365 ML and 354 non-ML PRs, and

their associated comments to shed light on developers’ discussions

about CI in their projects.

Our study findings highlight distinctive challenges in CI adop-

tion within ML projects, such as longer build duration and reduced

code coverage in medium-sized projects. The prevalence of increas-

ing build duration trends in small and medium-sized ML projects

underscores the necessity for tailored CI approaches. Moreover, the

qualitative analysis uncovers specific themes in CI discussions for

both ML and non-ML projects, elucidating the unique challenges

faced by ML projects. Overall, the study provides valuable insights

into the nuanced landscape of CI practices in ML projects, offering a

foundation for customized and effective approaches in this domain.

ACKNOWLEDGMENTS

This work is partially supported by INES (www.ines.org.br), CNPq

grant 465614/2014-0, CAPES grant 88887.136410/2017-00, FACEPE

grants APQ-0399-1.03/17, PRONEX APQ/ 0388-1.03/14, and CNPq

grant 425211/2018-5.

REFERENCES
[1] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall,

Ece Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann.

675

MSR ’24, April 15–16, 2024, Lisbon, Portugal Bernardo et al.

Software engineering for machine learning: A case study. In 2019 IEEE/ACM 41st
International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), pages 291–300. IEEE, 2019.

[2] Hironori Washizaki, Hiromu Uchida, Foutse Khomh, and Yann-Gaël Guéhéneuc.
Studying software engineering patterns for designing machine learning systems.
In 2019 10th International Workshop on Empirical Software Engineering in Practice
(IWESEP), pages 49–495. IEEE, 2019.

[3] Harikumar Pallathadka, Malik Mustafa, Domenic T Sanchez, Guna Sekhar Sajja,
Sanjeev Gour, and Mohd Naved. Impact of machine learning on management,
healthcare and agriculture. Materials Today: Proceedings, 80:2803–2806, 2023.

[4] Danielle Gonzalez, Thomas Zimmermann, and Nachiappan Nagappan. The state
of the ml-universe: 10 years of artificial intelligence & machine learning software
development on github. In Proceedings of the 17th International conference on
mining software repositories, pages 431–442, 2020.

[5] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian
Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al.
Emergent abilities of large language models. Transactions on Machine Learning
Research, 2022.

[6] S. Bhatt. 7 machine learning challenges businesses face while implementing,
2020.

[7] Lucy Ellen Lwakatare, Ivica Crnkovic, and Jan Bosch. Devops for ai–challenges
in development of ai-enabled applications. In 2020 international conference on
software, telecommunications and computer networks (SoftCOM), pages 1–6. IEEE,
2020.

[8] Teemu Karvonen, Woubshet Behutiye, Markku Oivo, and Pasi Kuvaja. Systematic
literature review on the impacts of agile release engineering practices. Information
and software technology, 86:87–100, 2017.

[9] Dhia Elhaq Rzig, Foyzul Hassan, Chetan Bansal, and Nachiappan Nagappan. Char-
acterizing the usage of ci tools in ml projects. In Proceedings of the 16th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement,
pages 69–79, 2022.

[10] Martin Fowler. Continuous integration, 2006.
[11] Paul M Duvall, Steve Matyas, and Andrew Glover. Continuous integration: im-

proving software quality and reducing risk. Pearson Education, 2007.
[12] JoãoHelis Bernardo, Daniel Alencar da Costa, Uirá Kulesza, and Christoph Treude.

The impact of a continuous integration service on the delivery time of merged
pull requests. Empirical Software Engineering, 28(4):97, 2023.

[13] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir
Filkov. Quality and productivity outcomes relating to continuous integration in
github. In Proceedings of the 2015 10th joint meeting on foundations of software
engineering, pages 805–816, 2015.

[14] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov, and Bog-
dan Vasilescu. The impact of continuous integration on other software develop-
ment practices: a large-scale empirical study. In 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 60–71. IEEE, 2017.

[15] João Helis Bernardo, Daniel Alencar da Costa, and Uirá Kulesza. Studying the
impact of adopting continuous integration on the delivery time of pull requests.
In Proceedings of the 15th International Conference on Mining Software Repositories,
pages 131–141, 2018.

[16] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
Usage, costs, and benefits of continuous integration in open-source projects. In
Proceedings of the 31st IEEE/ACM international conference on automated software
engineering, pages 426–437, 2016.

[17] Diego Saraiva, Daniel Alencar Da Costa, Uirá Kulesza, Gustavo Sizílio,
José Gameleira Neto, Roberta Coelho, and Meiyappan Nagappan. Unveiling
the relationship between continuous integration and code coverage. In 2023
IEEE/ACM 20th International Conference on Mining Software Repositories (MSR),
pages 247–259. IEEE, 2023.

[18] Wagner Felidré, Leonardo Furtado, Daniel A da Costa, Bruno Cartaxo, and Gus-
tavo Pinto. Continuous integration theater. In 2019 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM), pages
1–10. IEEE, 2019.

[19] Jadson Santos, Daniel Alencar da Costa, and Uirá Kulesza. Investigating the
impact of continuous integration practices on the productivity and quality of
open-source projects. In Proceedings of the 16th ACM/IEEE International Sympo-
sium on Empirical Software Engineering and Measurement, pages 137–147, 2022.

[20] Guilherme Freitas, João Helis Bernardo, Gustavo SizíLio, Daniel Alencar Da Costa,
and Uirá Kulesza. Analyzing the impact of ci sub-practices on continuous code
quality in open-source projects: An empirical study. In Proceedings of the XXXVII
Brazilian Symposium on Software Engineering, pages 1–10, 2023.

[21] Bojan Karlaš, Matteo Interlandi, Cedric Renggli, Wentao Wu, Ce Zhang, Deepak
Mukunthu Iyappan Babu, Jordan Edwards, Chris Lauren, Andy Xu, and Markus
Weimer. Building continuous integration services for machine learning. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 2407–2415, 2020.

[22] Alexandre Decan, Tom Mens, Pooya Rostami Mazrae, and Mehdi Golzadeh. On
the use of github actions in software development repositories. In 2022 IEEE
International Conference on Software Maintenance and Evolution (ICSME), pages
235–245. IEEE, 2022.

[23] Georgios Gousios and Diomidis Spinellis. Mining software engineering data from
github. In 2017 IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C), pages 501–502. IEEE, 2017.

[24] NuthanMunaiah, Steven Kroh, Craig Cabrey, andMeiyappanNagappan. Curating
github for engineered software projects. Empirical Software Engineering, 22:3219–
3253, 2017.

[25] Wes McKinney et al. pandas: a foundational python library for data analysis and
statistics. Python for high performance and scientific computing, 14(9):1–9, 2011.

[26] Coveralls. Coveralls, 2023.
[27] Codecov. Codecov, 2023.
[28] Eliezio Soares, Gustavo Sizilio, Jadson Santos, Daniel Alencar da Costa, and

Uirá Kulesza. The effects of continuous integration on software development: a
systematic literature review. Empirical Software Engineering, 27(3):78, 2022.

[29] Daniel S Wilks. Statistical methods in the atmospheric sciences, volume 100.
Academic press, 2011.

[30] Norman Cliff. Dominance statistics: Ordinal analyses to answer ordinal questions.
Psychological bulletin, 114(3):494, 1993.

[31] Jeanine Romano, Jeffrey D Kromrey, Jesse Coraggio, and Jeff Skowronek. Ap-
propriate statistics for ordinal level data: Should we really be using t-test and
cohen’sd for evaluating group differences on the nsse and other surveys. In
annual meeting of the Florida Association of Institutional Research, volume 177,
page 34, 2006.

[32] Rohit J Kate. Using dynamic time warping distances as features for improved
time series classification. Data Mining and Knowledge Discovery, 30:283–312,
2016.

[33] Donald J Berndt and James Clifford. Using dynamic time warping to find patterns
in time series. In Proceedings of the 3rd international conference on knowledge
discovery and data mining, pages 359–370, 1994.

[34] Stan Salvador and Philip Chan. Toward accurate dynamic time warping in linear
time and space. Intelligent Data Analysis, 11(5):561–580, 2007.

[35] Gustavo Sizilio Nery, Daniel Alencar da Costa, and Uirá Kulesza. An empirical
study of the relationship between continuous integration and test code evolution.
In 2019 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 426–436. IEEE, 2019.

[36] Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating the number
of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 63(2):411–423, 2001.

[37] Martin Maechler, Peter Rousseeuw, Anja Struyf, Mia Hubert, and Kurt Hornik.
cluster: Cluster analysis basics and extensions, 2019.

[38] Glenn A Bowen. Document analysis as a qualitative research method. Qualitative
research journal, 9(2):27–40, 2009.

[39] Zina O’leary. The essential guide to doing research. Sage, 2004.
[40] Timothy Kinsman, Mairieli Wessel, Marco A Gerosa, and Christoph Treude. How

do software developers use github actions to automate their workflows? In 2021
IEEE/ACM 18th International Conference on Mining Software Repositories (MSR),
pages 420–431. IEEE, 2021.

[41] Sharon L Lohr. Sampling: design and analysis. CRC press, 2021.
[42] Virginia Braun and Victoria Clarke. Using thematic analysis in psychology.

Qualitative research in psychology, 3(2):77–101, 2006.
[43] Lorelli S Nowell, Jill M Norris, Deborah E White, and Nancy J Moules. Thematic

analysis: Striving to meet the trustworthiness criteria. International journal of
qualitative methods, 16(1):1609406917733847, 2017.

[44] Virginia Braun and Victoria Clarke. Reflecting on reflexive thematic analysis.
Qualitative research in sport, exercise and health, 11(4):589–597, 2019.

[45] Lutz Prechelt. An empirical comparison of seven programming languages. Com-
puter, 33(10):23–29, 2000.

[46] Jie M. Zhang, Mark Harman, Lei Ma, and Yang Liu. Machine learning testing:
Survey, landscapes and horizons. IEEE Trans. Software Eng., 48(2):1–36, 2022.

[47] Elizamary de Souza Nascimento, Iftekhar Ahmed, Edson Oliveira, Márcio Piedade
Palheta, Igor Steinmacher, and Tayana Conte. Understanding development
process of machine learning systems: Challenges and solutions. In 2019 acm/ieee
international symposium on empirical software engineering and measurement
(esem), pages 1–6. IEEE, 2019.

[48] Taher Ahmed Ghaleb, Daniel Alencar Da Costa, and Ying Zou. An empirical
study of the long duration of continuous integration builds. Empirical Software
Engineering, 24:2102–2139, 2019.

[49] Dhia Elhaq Rzig, Foyzul Hassan, Chetan Bansal, and Nachiappan Nagappan.
Characterizing the usage of CI tools in ML projects. In ESEM ’22: ACM / IEEE
International Symposium on Empirical Software Engineering and Measurement,
Helsinki Finland, September 19 - 23, 2022, pages 69–79. ACM, 2022.

[50] Mehdi Golzadeh, Alexandre Decan, and Tom Mens. On the rise and fall of ci
services in github. In 2022 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 662–672. IEEE, 2022.

676

